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1. INTRODUCTION

As circular/annular plates are extensively used in sensors and other elemental structures in
engineering, the investigation on the behavior of mechanics such as deformation, vibration
and buckling, etc., has been intensi"ed by researchers and engineers (references [1}8], for
example). Laura et al. [1}3], and Gupta et al. [4, 5] investigated the linear free vibrations
and buckling of polar orthotropic circular and annular plates using analytical and/or
numerical methods. Zheng and Zhou [6], and Zhou et al. [7] studied the characteristics of
de#ection and free vibration in the vicinity of the de#ection con"guration to the circular
plates with geometrically non-linear deformation by means of the semianalytic method.
Dumir et al. [9] discussed non-linear vibrations of orthotropic circular plates by an
orthogonal point collocation method. Using the Kantorovich time-averaging method,
Huang [10] analyzed the non-linear oscillations of an isotropic circular plate with
a concentric rigid mass. Huang [11] employed the "nite element method to get some results
for a similar problem of hinged orthotropic circular plates. Although there are various
investigations on the mechanical behaviors of di!erent circular/annular plates in literature,
almost no attention has been paid to the characteristic of large-amplitude vibration and
thermal post-buckling of orthotropic circular/annular plates caused by an environment of
changing temperatures.

The present investigation is concerned with the axisymmetrical non-linear vibrations and
thermal buckling of a uniformly heated orthotropic circular plate with an edge which is
"xed in the line displacements, and is elastically restrained against the rotation. First, by
means of the Kantorovich time-averaging method [10, 12, 15], the time variable is
eliminated and the dynamic governing equations are reduced to a non-linear eigenvalue
problem, i.e., a set of non-linear ordinary di!erential equations dependent on the spatial
variable. After that, we employ the shooting method [14] to solve the induced di!erential
equations and then obtain the dynamic responses of non-linear vibration and thermal
post-buckling of the plates. Finally, some numerical results on the mechanical behaviors of
the plates varied with di!erent parameters of rigidity ratio, temperature and elastic
constraint are displayed in detail.
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2. GOVERNING EQUATIONS

Consider a thin polar orthotropic circular plate with radius a and thickness h.
A cylindrical co-ordinate system (r, h, z) is employed, and its original point is located at the
center of middle plane of the plate. The edge of the plate is immovably simply supported,
and its rotation about the tangential direction along the edge is elastically restrained by
a rotation spring with sti!ness k

(
. Assume that the plate is subjected to a steady rise of

temperature, ¹ (r). According to the theory of von Karman's plates and Hamilton's
principles [11, 13], when the axisymmetrical deformations of vibration and/or thermal
buckling of the plate are taken into account, the non-linear governing equations of the
problem can be written in the form
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in which the following non-dimensional quantities:

(x,;,=)"(r, u, w)/a, q"(t/a2)(D/oh)1@2, j"12(1#lhb)d2a
r
¹
0
, d"a/h,

k"Eh/Er
"lhr/lrh , b"ah/ar

, K
(
"ak

(
/D, k"(lh#bk)/(1#blh), lh"lhr (5)

are introduced. Here, u(r, t), and w (r, t) denote the radial and the transverse displacements
of the plate on the middle plane respectively. t is the time variable, and o represents the
density of mass. D"E

r
h3/[12(1!lhrlrh)] is the #exural rigidity of the plate; E, l and a are

the Young modulus, the Poisson ratio, and the coe$cients of thermal expansion of the plate
respectively. The subscripts &&r'' and &&h'' indicate that the quantities correspond to r and
h directions respectively. For the axisymmetric case, the applied temperature "eld at the
middle plane can be formulated by ¹(r)"¹

0
H(x) in which ¹

0
is a magnitude of the "eld,

while H (x) denotes the pro"le function of the "eld. In this paper, we consider the pro"le
function to be pre-known.

When the terms of inertia forces in the above governing equations are set to be zero, one
gets those governing equations for thermal post-buckling of the heated plates. In this case,
we have ;(x, q)";(x) and = (x, q)"= (x) in equations (1)}(4).

3. PROGRAM FOR SOLUTIONS

An exact solution of the problem de"ned by equations (1)}(4) is at present unknown.
Herein, an approximate solution in the &&assumed-time-mode'' form [7, 12, 15] is to be
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found. For an unbuckled plate, considering the essential vibration with harmonic response,
we take approximate solutions of the form

;(x, q)"m
0
(x)#m(x) cos2 uq, =(x, q)"g(x) cos uq, (6)

where u is a non-dimensional frequency, m (x) and g (x) are shape functions to be determined,
and m

0
(x) is a solution of the displacement ; to the static thermal stress problem of the

heated plate, i.e., it satis"es
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where ( )@ represents derivatives with respect to x. Substituting equation (6) of the assumed
solutions into equations (1)}(4), and using the Kantorovich time-averaging method [11, 13,
15] and considering equation (7), we obtain the non-linear ordinary di!erential equations
and the corresponding boundary conditions as follows:
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In order to assure a unique relationship between g and u, we introduce a normalization
condition in equation (9a) of the form

g (c)"A/d. (17)

Then, it is found that A"dg (Dx)"w (Dx, 0)/h is the non-dimensional amplitude of
transverse de#ection at the center of the plate. It can be shown that when u"0, C

1
"C

2
,

and y
7
"j, the resulting governing equations (8) and (9) for the vibration become those for

the thermal post-buckling of the heated plate.
Next, we use the shooting method [14, 15] to obtain numerical solutions of equations (8)

and (9). Corresponding to the boundary-value problem de"ned by equations (8) and (9a),
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we denote
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have

Z(x; A, V, j)"I(A, V)#P
x

Dx
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For a prescribed value of A, the components of V can be sought such that the boundary
condition (9b), or

B
2
Z(1; A, V*, j)"M0, 0, 0NT (20)

is satis"ed. Up to now, a root of equation (20), denoted by V"V*, is obtained. Further, the
solution of the boundary-value problem of equations (8) and (9) is gained by the expression

Y (x)"Z(x; A, V*, j). (21)

Finally, the solution of the problem considered here is obtained by equation (6).

4. NUMERICAL RESULTS AND DISCUSSIONS

Due to the limit of space, in this paper, we only display the results of the problems
considered here for the plates subjected to a "eld of rising uniform temperature. For this
case, we have ¹(r)"¹

0
or H (x),1 and there is no di$culty in "nding the solution of

equation (7) in the form
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for x'Dx'0. Here, c"Dx, B"(1!k)j/(12d2). Applying the Rung}Kutta method to
equation (19) and the Newton}Raphson method to equation (20) for "nding the root <*,
we get the numerical solutions of equations (8) and (9) [14, 15]. After that, an A-dependent
family of solutions of equations (8) and (9) will be get by the method of analytic
continuation when A increases with a small step [7, 15].

Here, we choose the geometric parameters d"a/h"30, and the Poisson ratio lh"0)3.
An error limit, e"10~5, is taken in the numerical calculation. Since a singularity will exist
when parameter c tends to be zero in the numerical computation, we set c"Dx"0)0001
approximately to take the place of the solid circular plate. In order to show the reliability of
the numerical technique employed here, we "rstly give some numerical tests for the linear
vibration of an unheated circular plate. A comparison of the results obtained from the
numerical method proposed in this paper with those from the Ritz method [5] for the
fundamental frequency of the plate is presented in Table 1, which exhibits that they are in
excellent agreement.

For the small-amplitude vibration, e.g., A"10~4, of uniformly heated circular plates
with di!erent values of rigidity ratio k, and parameter b, characteristic curves of the square



TABLE 1

Comparison of the linear frequency u with that in reference [5] (j"0)0, lh"0)3 and
A"10~4)

K
(

k"0)75 k"1)0 k"5)0 k"10)0

0 4)5421 4)5418s 4)9351 4)9351s 6)1456 11)2858 11)2858s

10 8)3877 8)3877s 8)7519 8)7519s 9)8843 14)7563 14)7563s

100 9)6168 9)6167s 10)0193 10)0192s 11)265 16)5434 16)5433s

R 9)8057 9)8056s 10)2158 10)2158s 11)485 16)8616 16)8616s

sThe results of reference [5].

Figure 1. Characteristic curves of the square of the fundamental frequency u2 versus the temperature parameter
j for the plate with K

(
"0)0 and A"0)0001: (1) k"0)2, b"2)0; (2) k"1)0, b"1)0; (3) k"2)0, b"2)0;

(4) k"3)0, b"3)0; (5) k"4)0, b"4)0.
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of fundamental frequency, u2, with respect to the temperature parameter j are plotted in
Figure 1. It shows that the square of the linear fundamental frequency, u2, decreases
monotonically and approximately linearly with the increment of the temperature
parameter, j, and especially we have u2"0 when j"j

cr
. It is obvious that j

cr
is a critical

temperature parameter over which the plate will be in buckled states.
Non-linear characteristic relationships between the fundamental frequency u and the

amplitude A are obtained by the method of analytical continuation. In Figure 2, we plot the
characteristic curves of amplitude}frequency of the heated circular plate with di!erent
values of parameters, j, k, b, and K

(
. It is found that the non-linear fundamental frequency

decreases as the temperature parameter j increases, and the frequency increases with
increment of the dimensionless amplitude A for all cases. The e!ect of the temperature
parameter j on the frequency u when A is small is more signi"cant than that when A is
large. Furthermore, these frequency}amplitude curves of the heated circular plate exhibit
a similar behavior to that of the free oscillation of a single-degree-of-freedom hard-spring
Du$ng system [7, 8, 15].

In the case of study of thermal post-buckling of the heated circular plate, we take
C

1
"C

2
"12d2, u"0 and y

7
"j in the computational program. Figure 3 displays the

secondary equilibrium paths of post-buckling state of the heated circular plates with
speci"ed values of parameters k and b. From these curves, we "nd that the fundamental or
initial equilibrium states bifurcate at the point (j, A)"(j

cr
, 0) of each curve.



Figure 2. Characteristic curves of amplitude}frequency of the heated circular plates: (a) k"2)0, b"0)75 and
K
(
"0: -#-, j"4; - -e- -, j"2; - -n- -, j"0; - -*- -, j"!2; *d*, j"!4; (b) k"2)0, b"0)75 and K

(
"R:

*h*, j"18)5;*n*, j"16)0;*s*, j"8)0;*]*, j"0)0; (c) k"2)0, b"0)5 and K
(
"0)1:*r*, j"6)0;*]*,

j"4)0; *s*, j"0)0; *n*, j"!4)0.

384 LETTERS TO THE EDITOR



Figure 3. Secondary equilibrium paths of the thermal post-buckled plate: (a) Immovably simply supported edge,
b"1/k, K

(
"0)0:***, k"6)0;*m*, k"7)0;*d*, k"2)0;*r*, k"0)5; (b) Clamped edge, b"1/k, K

(
"R:

*T*, k"0)5; *d*, k"2)0; *m*, k"4)0; ***, k"6)0.
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